Acids and Bases

Chapter 15

6

Acids

Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid.

React with certain metals to produce hydrogen gas.
React with carbonates and bicarbonates to produce carbon dioxide gas

Bases

Have a bitter taste.
Feel slippery. Many soaps contain bases.

A Lewis acid is a substance that can accept a pair of electrons A Lewis base is a substance that can donate a pair of electrons

acid base

acid base

Acid-Base Properties of Water

$$
\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

autoionization of water

The Ion Product of Water

$\mathrm{H}_{2} \mathrm{O}(\eta) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(\mathrm{aq}) \quad K_{c}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad\left[\mathrm{H}_{2} \mathrm{O}\right]=$ constant

$$
K_{c}\left[\mathrm{H}_{2} \mathrm{O}\right]=K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

The ion-product constant $\left(\boldsymbol{K}_{w}\right)$ is the product of the molar concentrations of H^{+}and OH^{-}ions at a particular temperature.

$$
\begin{gathered}
\text { At } 25^{\circ} \mathrm{C} \\
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
\hline
\end{gathered}
$$

$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	neutral
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	acidic
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$	basic

pH - A Measure of Acidity

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Solution Is

At $25^{\circ} \mathrm{C}$

neutral
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}$
$\mathrm{pH}=7$
acidic
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]>1 \times 10^{-7}$
pH <7
basic
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]<1 \times 10^{-7}$
$\mathrm{pH}>7$

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. What is the H^{+}ion concentration of the rainwater?

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
{\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.82}=1.5 \times 10^{-5} \mathrm{M}}
\end{gathered}
$$

The OH^{-}ion concentration of a blood sample is $2.5 \times 10^{-7} \mathrm{M}$. What is the pH of the blood?

$$
\begin{gathered}
\mathrm{pH}+\mathrm{pOH}=14.00 \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(2.5 \times 10^{-7}\right)=6.60 \\
\mathrm{pH}=14.00-\mathrm{pOH}=14.00-6.60=7.40
\end{gathered}
$$

$$
\begin{gathered}
\text { Strong Electrolyte }-100 \% \text { dissociation } \\
\mathrm{NaCl}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\text { Weak Electrolyte }- \text { not completely dissociated } \\
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
\end{gathered}
$$

Strong Acids are strong electrolytes

$$
\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

$$
\mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)
$$

$$
\mathrm{HClO}_{4}(a q)+\mathrm{H}_{2} \mathrm{O}(r) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{ClO}_{4}^{-}(a q)
$$

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HSO}_{4}^{-}(a q)
$$

Weak Acids are weak electrolytes

$$
\begin{aligned}
& \mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q) \\
& \mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q) \\
& \mathrm{HSO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{SO}_{4}^{2-}(a q) \\
& \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)
\end{aligned}
$$

Strong Bases are strong electrolytes

$\mathrm{NaOH}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)$
$\mathrm{KOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{K}^{+}(a q)+\mathrm{OH}^{-}(a q)$
$\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Weak Bases are weak electrolytes

$$
\begin{aligned}
& \mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{OH}^{-}(a q)+\mathrm{HF}(a q) \\
& \mathrm{NO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{OH}^{-}(a q)+\mathrm{HNO}_{2}(a q)
\end{aligned}
$$

Conjugate acid-base pairs:

- The conjugate base of a strong acid has no measurable strength.
- $\mathrm{H}_{3} \mathrm{O}^{+}$is the strongest acid that can exist in aqueous solution.
- The OH^{-}ion is the strongest base that can exist in aqeous solution.

TABLE 15.2 Relative Strengths of Conjugate Acid-Base Pairs

		Acid	Conjugate Base
	sp!̣e ء๐uons 	(HClO_{4} (perchloric acid)	ClO_{4}^{-}(perchlorate ion)
		HI (hydroiodic acid)	I^{-}(iodide ion)
		HBr (hydrobromic acid)	Br^{-}(bromide ion)
		HCl (hydrochloric acid)	Cl^{-}(chloride ion)
		$\mathrm{H}_{2} \mathrm{SO}_{4}$ (sulfuric acid)	HSO_{4}^{-}(hydrogen sulfate ion)
		(HNO_{3} (nitric acid)	NO_{3}^{-}(nitrate ion)
		$\mathrm{H}_{3} \mathrm{O}^{+}$(hydronium ion)	$\mathrm{H}_{2} \mathrm{O}$ (water)
		(HSO_{4}^{-}(hydrogen sulfate ion)	SO_{4}^{2-} (sulfate ion)
		HF (hydrofluoric acid)	F^{-}(fluoride ion)
		HNO_{2} (nitrous acid)	NO_{2}^{-}(nitrite ion)
		HCOOH (formic acid)	HCOO^{-}(formate ion)
		$\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid)	$\mathrm{CH}_{3} \mathrm{COO}^{-}$(acetate ion)
		NH_{4}^{+}(ammonium ion)	NH_{3} (ammonia)
		HCN (hydrocyanic acid)	CN^{-}(cyanide ion)
		$\mathrm{H}_{2} \mathrm{O}$ (water)	OH^{-}(hydroxide ion)
		NH3 (ammonia)	NH_{2}^{-}(amide ion)

What is the pH of a $2 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{3}$ solution?
HNO_{3} is a strong acid -100% dissociation.

Start	0.002 M	0.0 M	0.0 M
	HNO_{3}	$\mathrm{H}_{3} \mathrm{O}^{+}$	$+\mathrm{NO}_{3}{ }^{-}$
End	0.0 M	0.002 M	0.002 M
	$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.002)=2.7$		
What is the pH of a $1.8 \times 10^{-2} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution?			
$\mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base -100% dissociation.			

Start $0.018 \mathrm{M} \quad 0.0 \mathrm{M} \quad 0.0 \mathrm{M}$
$\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
End

$$
0.0 \mathrm{M} \quad 0.018 \mathrm{M} \quad 0.036 \mathrm{M}
$$

$$
\mathrm{pH}=14.00-\mathrm{pOH}=14.00+\log (0.036)=12.6
$$

Weak Acids (HA) and Acid Ionization Constants

$$
\begin{aligned}
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
\mathrm{HA}(\mathrm{aq}) & \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

K_{a} is the acid ionization constant

$$
K_{a} \uparrow \quad \begin{gathered}
\text { weak acid } \\
\text { strength }
\end{gathered} \uparrow
$$

$$
\text { percent ionization }=\frac{\text { Ionized acid concentration at equilibrium }}{\text { Initial concentration of acid }} \times 100 \%
$$

For a monoprotic acid HA
Percent ionization $=\frac{\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]_{0}} \times 100 \% \quad[\mathrm{HA}]_{0}=$ initial concentration

When can I use the approximation?

$$
K_{a} \ll 1 \quad 0.50-x \approx 0.50
$$

When x is less than 5% of the value from which it is subtracted.

$$
x=0.019 \quad \frac{0.019 M}{0.50 M} \times 100 \%=3.8 \% \quad \begin{gathered}
\text { Less than } 5 \% \\
\text { Approximation ok. }
\end{gathered}
$$

What is the pH of a 0.05 M HF solution (at $25^{\circ} \mathrm{C}$)?

$$
\begin{array}{cc}
K_{a} \approx \frac{x^{2}}{0.05}=7.1 \times 10^{-4} \quad x=0.006 \mathrm{M} \\
\frac{0.006 \mathrm{M}}{0.05 \mathrm{M}} \times 100 \%=12 \% & \text { More than } 5 \% \\
\text { Approximation not ok. }
\end{array}
$$

Must solve for x exactly using quadratic equation or method of successive approximation.

